用户名: 密码: 验证码:
Strength of Cfrp-steel double strap joints under impact loads using genetic programming
详细信息    查看全文
文摘
Carbon fibre reinforced polymers (CFRPs) are widely used by structural engineers to increase the strength of existing structures subjected to different loading actions. Existing steel structures are subjected to impact loadings due to the presence of new types of loads, and these structures need to be strengthened to sustain the new applied loads. Design guidelines for FRP-strengthened steel structures are not yet available, due to the lack of understanding of bond properties and bond strength. This paper presents the application of genetic programming (GP) to predict the bond strength of CFRP-steel double strap joints subjected to direct tension load. Extensive data from experimental tests and finite element modelling were used to develop a new joint strength formulation. The selected parameters which have a direct impact on the joint strength were: bond length, CFRP modulus and the loading rate. A wide range of loading rates and four CFRP moduli with different bond lengths were used. The prediction of the GP model was compared with the experimental values. The model has a high value of R squared, which indicates good accuracy of results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700