用户名: 密码: 验证码:
Influence of lactic acid bacteria on redox status and on proteolytic activity of buckwheat (Fagopyrum esculentum Moench) sourdoughs
详细信息    查看全文
文摘
Redox potential and proteolysis determine protein networks in doughs and thus dough rheology as well as the structure of baked goods. Namely, gluten-free bakery products needs structural improvements but little is known about these parameters in gluten free dough systems. In this work the influence of lactic acid bacteria (LAB) on redox status and proteolysis of buckwheat sourdoughs was investigated. An increase of free thiol groups was detected as redox potential was decreasing during fermentation. Thiol content at 8 h was higher in doughs fermented with strains with high reductive activity, such as Weissella (W.) cibaria in comparison to Pediococcus (P.) pentosaceus, which exhibited a lower reducing activity. At 24 h each fermentation showed a similar content of free thiol groups. Endogenous buckwheat proteases were characterized using various protease inhibitors in buckwheat doughs. Until pH 3.1 a proteolysis increase was monitored in doughs. Employed LAB didn't show any detectable extracellular proteolytic activity. Flour proteases are thus responsible for protein breakdown, and this was demonstrated comparing free amino nitrogen (FAN) values and protein electrophoretic patterns of sourdough fermentations with chemical acidified (CA) doughs. FAN content at 24 h using P. pentosaceus, proteolytic comparative strain of Enterococcus faecalis, W. cibaria, mixed culture (containing P. pentosaceus and W. cibaria), CA and CA doughs containing glutathione (GSH) reached 45.9 ¡À 1.3, 42.4 ¡À 1.3, 40 ¡À 1, 31 ¡À 2, 29 ¡À 2 and 17.8 ¡À 3.9 mmol kg? 1 flour, respectively. Proteolysis was mainly influenced by pH and incubation time. The addition of GSH showed a decrease of proteolysis and of free amino acids. CA doughs showed a higher total free amino acids content than sourdough fermented with LAB indicating their metabolization. Fermentations with high FAN values exhibited lower band intensity (analyzed under reducing condition) in electrophoretic patterns. These results show that dough proteases are responsible for proteolysis in buckwheat sourdoughs and this activity is influenced from LAB metabolism. Moreover, oxidation-reduction potential (ORP) changes do not show improvements of proteolytic activity in buckwheat sourdoughs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700