用户名: 密码: 验证码:
Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into Vb>2b>Ob>5b> nanowires in a rechargeable aluminum battery
详细信息    查看全文
文摘
As a new type of multi-electron transfer device, rechargeable aluminum batteries are promising post-lithium ion batteries owing to their high theoretical energy density. However, it is unknown whether Al3+ can be reversibly stored in the lattice of the host electrode material because of its small cation diameter and high valence state, thus trapping it tightly in lattice or defect sites. Here, we report the reversible storage of Al3+ in V2O5 nanowires. It is found that Al3+ intercalates into crystalized V2O5 nanowires in the first discharge. Meanwhile, this electrochemical intercalation leads to the reduction of V5+ and the formation of an amorphous layer on the edge of nanowires. In the subsequent cycling, a new phase forms along the nanowires’ edges and a two-phase transition reaction occurs. Our findings demonstrate clearly for the first time that it is possible that Al3+ can be inserted into the metal oxide and stored reversibly through intercalation and a phase-transition reaction, which is expected to inspire more comprehensive investigations for rechargeable aluminum batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700