用户名: 密码: 验证码:
Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis
详细信息    查看全文
文摘
TP53 is a critical tumor suppressor gene that regulates cell cycle progression, apoptosis, cellular senescence and many other properties critical for control of normal cellular growth and death. Due to the pleiotropic effects that TP53 has on gene expression and cellular physiology, mutations at this tumor suppressor gene result in diverse physiological effects. T53 mutations are frequently detected in numerous cancers. The expression of TP53 can be induced by various agents used to treat cancer patients such as chemotherapeutic drugs and ionizing radiation. Radiation will induce Ataxia telangiectasia mutated (ATM) and other kinases that results in the phosphorylation and activation of TP53. TP53 is also negatively regulated by other mechanisms, such as ubiquitination by ligases such as MDM2. While TP53 has been documented to control the expression of many “classical” genes (e.g., p21Cip−1, PUMA, Bax) by transcriptional mechanisms for quite some time, more recently TP53 has been shown to regulate microRNA (miR) gene expression. Different miRs can promote oncogenesis (oncomiR) whereas others act to inhibit tumor progression (tumor suppressor miRs). Targeted therapies to stabilize TP53 have been developed by various approaches, MDM2/MDM4 inhibitors have been developed to stabilize TP53 in TP53-wild type (WT) tumors. In addition, small molecules have been isolated that will reactivate certain mutant TP53s. Both of these types of inhibitors are in clinical trials. Understanding the actions of TP53 may yield novel approaches to suppress cancer, aging and other health problems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700