用户名: 密码: 验证码:
Structurally-informed Bayesian functional connectivity analysis
详细信息    查看全文
文摘
Functional connectivity refers to covarying activity between spatially segregated brain regions and can be studied by measuring correlation between functional magnetic resonance imaging (fMRI) time series. These correlations can be caused either by direct communication via active axonal pathways or indirectly via the interaction with other regions. It is not possible to discriminate between these two kinds of functional interaction simply by considering the covariance matrix. However, the non-diagonal elements of its inverse, the precision matrix, can be naturally related to direct communication between brain areas and interpreted in terms of partial correlations. In this paper, we propose a Bayesian model for functional connectivity analysis which allows estimation of a posterior density over precision matrices, and, consequently, allows one to quantify the uncertainty about estimated partial correlations. In order to make model estimation feasible it is assumed that the sparseness structure of the precision matrices is given by an estimate of structural connectivity obtained using diffusion imaging data. The model was tested on simulated data as well as resting-state fMRI data and compared with a graphical lasso analysis. The presented approach provides a theoretically solid foundation for quantifying functional connectivity in the presence of uncertainty.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700