用户名: 密码: 验证码:
Smad7 acts as a negative regulator of the epidermal growth factor (EGF) signaling pathway in breast cancer cells
详细信息    查看全文
文摘
Although it has been suggested that smad7 blocks downstream signaling of TGF-¦Â, the role of smad7 in the EGF signaling pathway has not been fully elucidated. We determined the effect of smad7 on EGF-induced MMP-9 expression in SKBR3 breast cancer cells. The expression of smad7 and MMP-9 was increased by EGF or TGF-¦Â1, respectively, and further increased by EGF and TGF-¦Â1 co-treatment. EGF induced the phosphorylation of EGFR, smad3, ERK, and JNK, and MMP-9 expression was decreased by the EGFR inhibitor, AG1478. In addition, EGF-induced MMP-9 expression was inhibited by UO126 (a MEK1/2 inhibitor) or SIS3 (a smad3 inhibitor), but not by SP600125 (a JNK inhibitor). Interestingly, EGF-induced smad3 phosphorylation was completely blocked by smad7 over-expression, but not the phosphorylation of ERK and JNK. EGF- or TGF-¦Â1-induced MMP-9 expression was completely decreased by adenoviral-smad7 (Ad-smad7) over-expression. We also investigated the role of smad3 on EGF-induced MMP-9 expression and showed that EGF-induced MMP-9 expression was decreased by smad3 siRNA transfection, whereas EGF-induced MMP-9 expression was further increased by smad3 over-expression, as expected. This study showed that EGF-induced smad3 phosphorylation mediates the induction of MMP-9, whereas smad7 inhibits TGF-¦Â1 as well as the EGF signaling pathway in SKBR3 cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700