用户名: 密码: 验证码:
Finite-horizon Gaussianity-preserving event-based sensor scheduling in Kalman filter applications
详细信息    查看全文
文摘
This paper considers a remote state estimation problem, where a sensor measures the state of a linear discrete-time system. The sensor has computational capability to implement a local Kalman filter. The sensor-to-estimator communications are scheduled intentionally over a finite time horizon to obtain a desirable tradeoff between the state estimation quality and the limited communication resources. Compared with the literature, we adopt a Gaussianity-preserving event-based sensor schedule bypassing the nonlinearity problem met in threshold event-based polices. We derive the closed-form of minimum mean-square error (MMSE) estimator and show that, if communication is triggered, the estimator cannot do better than the local Kalman filter, otherwise, the associated error covariance, is simply a sum of the estimation error of the local Kalman filter and the performance loss due to the absence of communication. We further design the scheduler’s parameters by solving a dynamic programming (DP) problem. The computational overhead of the DP problem is less sensitive to the system dimension compared with that of existing algorithms in the literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700