用户名: 密码: 验证码:
Metabolic engineering of tomato for high-yield production of astaxanthin
详细信息    查看全文
文摘
Dietary carotenoids have been shown to be beneficial to health by decreasing the risk of many diseases. Attempts to enhance carotenoids in food crops have been successful although higher plants appear to resist big changes of carotenoid biosynthesis by metabolic engineering. Here we report the generation of a more nutritious tomato by modifying the intrinsic carotenes to astaxanthin, a high-value ketocarotenoid rarely found in plants. This was achieved by co-expression of the algal ¦Â-carotene ketolase from Chlamydomonas reinhardtii and ¦Â-carotene hydroxylase from Haematococcus pluvialis, a unique pair of enzymes identified to co-operate perfectly in converting ¦Â-carotene to astaxanthin by functional complementation in Escherichia coli. Expression of the two enzymes in tomato up-regulated most intrinsic carotenogenic genes, and efficiently directed carbon flux into carotenoids, leading to massive accumulations of mostly free astaxanthin in leaves (3.12 mg/g) but esterified astaxanthin in fruits (16.1 mg/g) and a 16-fold increase of total carotenoid capacity therein without affecting the plant normal growth and development. This study opened up the possibility of employing crop plants as green factories for economical production of astaxanthin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700