用户名: 密码: 验证码:
Studies of tip wear processes in tapping mode™ atomic force microscopy
详细信息    查看全文
文摘
Tip integrity is crucial to atomic force microscope image quality. Tip wear not only compromises image resolution but also introduces artifacts. However, the factors that govern wearing have not been systematically studied. The results presented here of tip wearing on a rough titanium surface were determined by monitoring changes in tip shape and the evolution of histograms of complex surface curvatures under different control parameters. In contrast with the common assumption that operating at a low set point (the ratio of tapping amplitude to free oscillation amplitude) wears the tip quickly, we observed that a low set point actually minimizes tip wear on a hard surface regardless of the free amplitude. The results can be interpreted qualitatively with theoretical calculations based on momentum exchange at tapping impact. Operating at a low set point allows more robust scanning than with a high set point (tapping near free amplitude), providing a method to slow down tip wear. Another advantage of a low set point is that amplitude error grows faster than with a high set point by nearly an order of magnitude, permitting an increase in scanning speed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700