用户名: 密码: 验证码:
Improve photocurrent quantum efficiency of carbon nanotube by chemical treatment
详细信息    查看全文
文摘
High photocurrent quantum efficiency (QE) of carbon nanotubes (CNTs) is important to their photovoltaic applications. The ability of photocurrent generation of CNTs depends on their band structure and surface state. For given CNTs, it is possible to improve the QE of photocurrent by chemical modification. Here, we study the effects of simple chemical treatment on the QE of CNTs by measuring the photocurrent of macroscopic CNT bundles. The QE of the H2O2-treated CNT bundle reaches 5.28 % at 0.1 V bias voltage at a laser (¦Ë = 473 nm) illumination, which is 85 % higher than that of the pristine sample. But the QE of the CNTs treated in concentrated HNO3 is lower than that of the pristine sample. It shows that moderate chemical treatment can enhance the photocurrent QE and excessive chemical treatment will decrease the QE because of introducing lots of structural defects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700