用户名: 密码: 验证码:
Highly sensitive cantilever type chemo-mechanical hydrogen sensor based on contact resistance of self-adjusted carbon nanotube arrays
详细信息    查看全文
文摘
A highly sensitive cantilever type chemo-mechanical hydrogen sensor with a novel sensing mechanism that can detect changes in contact resistance in self-adjusted carbon nanotube (CNT) arrays is described. The fabricated sensor is fully batch-fabricated on a silicon-on-insulator (SOI) wafer and is composed of two facing sets of CNT arrays, situated between a Pd-coated micro-cantilever, that serve as the electrode and counter-electrode. When the sensor is exposed to various concentrations of hydrogen at room temperature, resistance is decreased as the cantilever deforms and increases inter-CNT contact. Turning off the hydrogen re-shrinks the Pd, restoring the original cantilever position and recovering the initial resistance. The sensor can detect hydrogen diluted in nitrogen at concentrations of up to 4% and has an average response as high as 鈭?.22% to a 0.1% concentration of hydrogen in air, which is the minimum detection limit. This sensitivity, which is much higher than in previously reported cantilever-type resistive chemo-mechanical hydrogen sensors, can be attributed to the novel sensing mechanism in which the narrow-gap between CNT arrays comprise the sensing component.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700