用户名: 密码: 验证码:
Disentangling linear and nonlinear brain responses to evoked deep tissue pain
详细信息    查看全文
文摘
Pain stimuli evoke widespread responses in the brain. However, our understanding of the physiological significance underlying heterogeneous response within different pain-activated and -deactivated regions is still limited. Using functional magnetic resonance imaging, we evaluated brain responses to a wide range of stimulus intensity levels (1 innocuous, 7 painful) in order to estimate region-specific stimulus-response functions, which we hypothesized could illuminate that region¡¯s functional relationship to pain. Linear and nonlinear brain responses to pain were estimated through independent Legendre polynomial transformations of pain ratings within a general linear model. This approach identified at least 5 different, regionally specific activity profiles in the brain. Linearly increasing (eg, primary somatosensory/motor cortex, insulae) and intensity-independent (eg, secondary somatosensory cortex) activation was noted in traditional pain-processing areas, potentially reflecting sensory encoding and all-or-none salience responses, respectively. Multiple activity profiles were seen in areas of the default mode network (DMN): intensity-independent deactivation (eg, posterior cingulate cortex), linearly decreasing (eg, contralateral inferior parietal lobule), and quadratic (U-shaped; eg, medial prefrontal cortex). The latter observation suggests that: (1) different DMN subregions exhibit functional heterogeneity and (2) some DMN subregions respond in a percept-related manner to pain, suggesting closer linkage between the DMN and pain processing than previously thought. Future studies should apply a similar approach using innocuous stimuli of multiple intensities to evaluate whether the response profiles reported here can also be generalized to nonpainful somatosensory processing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700