用户名: 密码: 验证码:
Carbon-assisted synthesis of mesoporous SnO2 nanomaterial as highly sensitive ethanol gas sensor
详细信息    查看全文
文摘
Mesoporous SnO2 nanomaterials with the central pore sizes of 4.1 nm, 6.1 nm and 8.0 nm have been fabricated by a novel carbon-assisted synthesis method (CAS). By using this method, the pore size can be easily regulated by adjusting the concentration of glucose in the precursor solution. The prepared SnO2 nanomaterials with distinct pore sizes were characterized by transmission electron microscopy (TEM and HRTEM) and nitrogen adsorption-desorption analysis. Besides, the gas sensing properties of these mesoporous SnO2 nanomaterials were evaluated. Testing results reveal that the three kinds of mesoporous SnO2 nanomaterials exhibit short response/recovery time to ethanol gas and the ultralow detection limits of 100 ppb, 50 ppb and 400 ppb, respectively. The proper networked mesoporous nanostructure (NMNs) is responsible for the distinct response-recovery behavior and the mechanism to get the ultralow detection limit. The excellent gas sensing characteristic together with large-scale production and low-cost route hold a great promise for the application of ethanol detection at ultra-low concentration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700