用户名: 密码: 验证码:
Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency
详细信息    查看全文
文摘
Activated phosphatidylinositol 3-kinase δ syndrome (APDS) is a recently discovered primary immunodeficiency disease (PID). Excess phosphatidylinositol 3-kinase (PI3K) activity linked to mutations in 2 PI3K genes, PIK3CD and PIK3R1, causes APDS through hyperphosphorylation of AKT, mammalian target of rapamycin (mTOR), and S6.ObjectiveThis study aimed to identify novel genes responsible for APDS.MethodsWhole-exome sequencing was performed in Japanese patients with PIDs. Immunophenotype was assessed through flow cytometry. Hyperphosphorylation of AKT, mTOR, and S6 in lymphocytes was examined through immunoblotting, flow cytometry, and multiplex assays.ResultsWe identified heterozygous mutations of phosphatase and tensin homolog (PTEN) in patients with PIDs. Immunoblotting and quantitative PCR analyses indicated that PTEN expression was decreased in these patients. Patients with PTEN mutations and those with PIK3CD mutations, including a novel E525A mutation, were further analyzed. The clinical symptoms and immunologic defects of patients with PTEN mutations, including lymphocytic AKT, mTOR, and S6 hyperphosphorylation, resemble those of patients with APDS. Because PTEN is known to suppress the PI3K pathway, it is likely that defective PTEN results in activation of the PI3K pathway.ConclusionPTEN loss-of-function mutations can cause APDS-like immunodeficiency because of aberrant PI3K pathway activation in lymphocytes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700