用户名: 密码: 验证码:
Subsurface crack damage in silicon wafers induced by resin bonded diamond wire sawing
详细信息    查看全文
文摘
In order to optimize the process of wire sawing, this work studied the subsurface crack damage in silicon wafers induced by resin bonded diamond wire sawing using theoretical and experimental methods. A novel mathematical relationship between subsurface crack damage depth and processing parameters was established according to the indentation fracture mechanics. Sawing experiment using resin bonded diamond wire saw was performed on a wire saw machine. The validity of the proposed model was conducted by comparing with the experimental results. At last, the influences of processing parameters on subsurface damage depth were discussed. Results indicate that the median cracks are mainly oblique cracks which generate the subsurface crack damage. On the diamond wire saw cross section, the abrasives with the position angle 78° between abrasive position and vertical direction generate the largest subsurface damage depth. Furthermore, abrasives, generating the subsurface damage, tend away from the bottom of diamond wire with the increase of wire speed or decreases with the increase of feed rate. However, the wire speed and feed rate have opposite effects on the subsurface crack damage depth. In addition, the subsurface crack damage depth is unchanged when the ratio of feed rate and wire speed does not change.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700