用户名: 密码: 验证码:
Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinity
详细信息    查看全文
文摘
2Mg2SiO4+2H2O+HCO3鈭掆啋MgCO3+Mg3Si2O5OH4+OH鈭?This reaction mechanism implied a dissolution process, releasing Mg and Si ions into solution until supersaturation of solution with respect to magnesite and/or serpentine. The released iron contained in the olivine has not implied any precipitation of iron oxides or (oxy)hydroxides; in fact, the released iron was partially oxidized (about 50%) via a simple reduction of water (2Fe2 + + 2H2O 鈫?#xA0;2Fe3 + + H2 + 2OH鈭?/sup>). In this way, the released iron was incorporated in serpentine (Fe(II) and Fe(III)) and in magnesite (Fe(II). The latter was clearly determined by FESEM/EDS chemical analysis on the single magnesite crystals. The nucleation and epitaxial growth processes at the olivine-fluid interfaces cannot be excluded in our investigated system.

The experimental kinetic data fitted by using a kinetic pseudo-second-order model have revealed a retarding process of serpentine formation with respect to magnesite (about three times slower); in fact, the magnesite seems to reach an apparent stabilization after about 20 days of reaction while the serpentine follows a progressive slower evolution. We assumed that the magnesite has reached a fast apparent equilibrium with solution because the available carbonate species are not renewed from fluid phase as typically constrained in aqueous carbonation experiments where a given CO2 pressure is imposed in the system.

On the other hand, the reactivity of serpentinized olivine (chrysotile + brucite + small amount of residual olivine) and high-purity chrysotile at the same above investigated conditions; and the olivine serpentinization in initial acid pH 鈮?#xA0;0.66 are also reported as complementary information in this study.

These novel experimental results concerning simultaneous serpentinization and aqueous carbonation of olivine expand the thermodynamic conditions where serpentine and magnesite can simultaneously precipitate; this could contribute to a better understanding of fluid-rock interactions in natural active hydrothermal fields on Earth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700