用户名: 密码: 验证码:
Numerical simulation of mitral valve prolapse considering the effect of left ventricle
详细信息    查看全文
文摘
Heart failure is one of the most important issues that has been investigated in recent research studies. Variations that occur in apparatus of mitral valve, such as chordae tendineaea rupture, can affect the valve function during ventricular contraction and lead to regurgitation from the left ventricle into the left atrium. One method for understanding mitral valve function in such conditions is computational analysis. In this paper, we develop a finite element model of mitral valve prolapse, considering the direct effect of left ventricular motion on blood flow interacting with the mitral valve. Ventricular wall motion is used as a constraint for fluid domain. Arbitrary Lagrangian–Eulerian finite element method formulation is used for numerical solution of transient dynamic equations of the fluid domain. Leaflets’ stresses and chordal forces during prolapse are determined and compared to previous healthy results, as well as flow characteristics in the computational domain. Results show considerable increases in the stress magnitudes of interior and posterior leaflets in prolapse condition in comparison with previous healthy studies. In addition, chordae tendineae forces are distributed non-uniformly with higher maximum value here, as a result of other chordae tendineae rupture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700