用户名: 密码: 验证码:
Optimization of nonlinear quarter car suspension-seat-driver model
详细信息    查看全文
文摘
In this paper a nonlinear quarter car suspension–seat–driver model was implemented for optimum design. A nonlinear quarter car model comprising of quadratic tyre stiffness and cubic stiffness in suspension spring, frame, and seat cushion with 4 degrees of freedom (DoF) driver model was presented for optimization and analysis. Suspension system was aimed to optimize the comfort and health criterion comprising of Vibration Dose Value (VDV) at head, frequency weighted RMS head acceleration, crest factor, amplitude ratio of head RMS acceleration to seat RMS acceleration and amplitude ratio of upper torso RMS acceleration to seat RMS acceleration along with stability criterion comprising of suspension space deflection and dynamic tyre force. ISO 2631-1 standard was adopted to assess ride and health criterions. Suspension spring stiffness and damping and seat cushion stiffness and damping are the design variables. Non-dominated Sort Genetic Algorithm (NSGA-II) and Multi-Objective Particle Swarm Optimization – Crowding Distance (MOPSO-CD) algorithm are implemented for optimization. Simulation result shows that optimum design improves ride comfort and health criterion over classical design variables.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700