用户名: 密码: 验证码:
PtPd alloy embedded in nitrogen-rich graphene nanopores: High-performance bifunctional electrocatalysts for hydrogen evolution and oxygen reduction
详细信息    查看全文
文摘
Searching for high-efficiency and low-cost bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) has been actively encouraged for their promising applications. We report a facile strategy to prepare PtPd alloy embedded in nitrogen-rich graphene nanopores (Pt2Pd/NPG) as highly efficient bifunctional electrocatalysts for HER and ORR. The as-prepared Pt2Pd/NPG exhibits prominent onset potential, excellent stability, good kinetic current density, and remarkable corrosion resistance to HER and ORR. Density functional theory (DFT) calculations reveal that the remarkably enhanced performance of Pt2Pd/NPG originated from the robust conjugation between the Pt2Pd alloy nanoparticles and nitrogen-rich graphene nanopores, thereby leading to the synergistic effect of both interfaces. The nanopores also modulate the electronic properties of Pt2Pd alloy nanoparticles, which improve the durability during HER and ORR. A novel approach for preparing high-performance bifunctional electrocatalysts with embedded metal alloy in nitrogen-rich carbon is presented. The process has potential applications in energy conversion and storage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700