用户名: 密码: 验证码:
Effectiveness of jet location on mixing characteristics inside a cavity in supersonic flow
详细信息    查看全文
文摘
The incorporation of cavities within supersonic combustion chambers is an effective means of slowing down the flow for fuel injection and consequent stable combustion. Understanding the flow physics associated with such flows, especially with the injection of a gas to replicate fuel injection, are essential for the optimum design of supersonic propulsion mechanisms. An experimental investigation was performed on a rectangular open cavity with upstream injection model in a Mach number of 1.9 using a trisonic indraft wind tunnel. A rectangular open cavity of dimensions L/D = 5, 100 mm in length (L) and 20 mm deep (D), was adopted, and it was embedded into the lower wall of the test section. An air jet with a jet-to-freestream momentum flux ratio of = 1.2, 2.7 and 5.3 was injected upstream of the cavity. To evaluate the effect on mixing and flow stability the jet position, measured from the front edge of the cavity, was varied between 0.1L and 1L. The flow field was visualized using schlieren photography, particle image velocimetry, and oil flow measurements. It is found that the mixing characteristic within the cavity when the jet is positioned 0.1L is enhanced independent on the J value because the turbulence intensity of the flow velocity within the cavity is strongly influenced by the jet interaction which lifted the flow from the floor of the cavity compared to the other jet positions. However, the flow over the cavity is unstable at all jet positions. The separation shock formed at the front edge of the cavity oscillates significantly for the case where the jet is located at 0.1L because the separation shock location coincides with the compression shock behind the jet.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700