用户名: 密码: 验证码:
Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: Varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield
详细信息    查看全文
文摘
To evaluate the combined effect of temperature and CO2 on photosynthetic processes, leaf metabolites and growth, soybean was grown under a controlled environment at low (22/18 °C, LT), optimum (28/24 °C, OT) and high (36/32 °C HT) temperatures under ambient (400 μmol mol−1; aCO2) or elevated (800 μmol mol−1; eCO2) CO2 concentrations during the reproductive stage. In general, the rate of photosynthesis (A), stomatal (gs) and mesophyll (gm) conductance, quantum yield of photosystem II, rates of maximum carboxylation (VCmax), and electron transport (J) increased with temperature across CO2 levels. However, compared with OT, the percentage increases in these parameters at HT were lower than the observed decline at LT. The photosynthetic limitation at LT and OT was primarily caused by photo-biochemical processes (49–58%, Lb) followed by stomatal (27–32%, Ls) and mesophyll (15–19%, Lm) limitations. However, at HT, it was primarily caused by Ls (41%) followed by Lb (33%) and Lm (26%). The dominance of Lb at LT and OT was associated with the accumulation of non-structural carbohydrates (e.g., starch) and several organic acids, whereas this accumulation did not occur at HT, indicating increased metabolic activities. Compared with OT, biomass and seed yield declined more at HT than at LT. The eCO2 treatment compensated for the temperature-stress effects on biomass but only partially compensated for the effects on seed yield, especially at HT. Photosynthetic downregulation at eCO2 was possibly due to the accumulation of non-structural carbohydrates and the decrease in gs and Astd (standard A measured at 400 μmol mol−1 sub-stomatal CO2 concentration), as well as the lack of CO2 effect on gm, VCmax, and J, and photosynthetic limitation. Thus, the photosynthetic limitation was temperature-dependent and was primarily influenced by the alteration in photo-biochemical processes and metabolic activities. Despite the inconsistent response of photosynthesis (or biomass accumulation) and seed yield, eCO2 tended to fully or partially compensate for the adverse effect of the respective LT and HT stresses under well-watered and sufficient nutrient conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700