用户名: 密码: 验证码:
Fine characterization of OsPHO2 knockout mutants reveals its key role in Pi utilization in rice
详细信息    查看全文
文摘
Previous research using forward genetics approaches demonstrated that OsPHO2 regulates multiple phosphate-starvation responses in rice. In this work, we finely characterized two independent OsPHO2 knockout rice mutants under inorganic phosphate (Pi)-sufficient conditions. The ospho2 mutants exhibited defects in growth and reproductive development in the whole growing period. The cells in the elongation zone of ospho2 seedling roots were much shorter than those of the wild type. The phosphorus concentration in the blades of ospho2 mutants was 5.8-fold higher than those of wild-type plants, whereas it was only slightly higher in the sheaths, culms, spikelets, and seeds. Furthermore, Pi levels in the ospho2 mutants were highest in the oldest leaf and lowest in the youngest leaf, whereas there was no significant difference in the corresponding leaves of wild-type plants. These results suggest that ospho2 mutant phenotype results from a partial defect in Pi translocation and remobilization in the shoot of rice. This study thus provides evidence that OsPHO2, which functions at the downstream of OsPHF1, modulates Pi utilization by regulating the expression of Pht1 transporters in rice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700