用户名: 密码: 验证码:
Conformation-mediated Förster resonance energy transfer (FRET) in blue-emitting polyvinylpyrrolidone (PVP)-passivated zinc oxide (ZnO) nanoparticles
详细信息    查看全文
文摘
Homopolymers, such as polyvinylpyrrolidone (PVP), are commonly used to passivate the surface of blue-light emitting ZnO nanoparticles during colloid nucleation and growth. However, although PVP is known to auto-fluoresce at 400 nm, which is near the absorption edge of ZnO, the impact of PVP adsorption characteristics on the surface of ZnO and the surface-related photophysics of PVP-capped ZnO nanoparticles is not well understood. To investigate, we have synthesized ZnO nanoparticles in solvents containing PVP of 3 concentrations—0.5, 0.7, and 0.11 g mL−1. Using time-domain NMR, we show that the adsorbed polymer conformation differs with polymer concentration—head-to-tail under low concentration (e.g., 0.05 g mL−1) and looping, then train-like, with increasing concentration (e.g., 0.07 g mL−1 and 0.11 g mL−1, respectively). When the surface-adsorbed PVP is entrained, the surface states of ZnO are passivated and radiative emission from surface trap states is suppressed, allowing emission to be dominated by exciton transitions in the UV (ca. 310 nm). Moreover, the reduced proximity between the PVP molecule and the ZnO gives rise to increased efficiency of energy transfer between the exciton emission of ZnO and the HOMO-LUMO absorption of PVP (ca. 400 nm). As a result, light emission in the blue is enhanced in the PVP-capped ZnO nanoparticles. We thus show that the emission properties of ZnO can be tuned by controlling the adsorbed PVP conformation on the ZnO surface via the PVP concentration in the ZnO precipitation medium.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700