用户名: 密码: 验证码:
Revealing regions of multiple steady states in heterogeneous catalytic chemical reaction networks using Gröbner basis
详细信息    查看全文
文摘
The Chemical Reaction Network Theory (CRNT) formalism classifies any CRN using a nonnegative index called deficiency. If the deficiency is equal to or greater than one, and the CRN fulfills some structural conditions, then it is possible to establish whether or not the set of Mass Action Kinetics Ordinary Differential Equations (MAK-ODEs) induced by the CRN can support Multiple Positive Steady States (MPSS) within each stoichiometric compatibility class. If MPSS exists the CRNT provides a set of kinetic constants for such steady states. Most of the heterogeneous catalytic CRNs are of deficiency one, thus the CRNT applies straightforwardly. Moreover, the balance of catalytic sites defines a stoichiometric compatibility class. In this contribution, CRNT is used along with Gröbner basis to derive analytical polynomial expressions depending on a measurable chemical species (e.g. the product of interest) and the catalytic site concentration. This methodology reveals the exact regions where MPSS are supported. Putative heterogeneous catalytic CRNs, such as Eley–Rideal and Langmuir–Hinshelwood, are analyzed using this methodology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700