用户名: 密码: 验证码:
Influence of timing variability between motor unit potentials on M-wave characteristics
详细信息    查看全文
文摘
The transient enlargement of the compound muscle action potential (M wave) after a conditioning contraction is referred to as potentiation. It has been recently shown that the potentiation of the first and second phases of a monopolar M wave differed drastically; namely, the first phase remained largely unchanged, whereas the second phase underwent a marked enlargement and shortening. This dissimilar potentiation of the first and second phases has been suggested to be attributed to a transient increase in conduction velocity after the contraction. Here, we present a series of simulations to test if changes in the timing variability between motor unit potentials (MUPs) can be responsible for the unequal potentiation (and shortening) of the first and the second M-wave phases. We found that an increase in the mean motor unit conduction velocity resulted in a marked enlargement and narrowing of both the first and second M-wave phases. The enlargement of the first phase caused by a global increase in motor unit conduction velocities was apparent even for the electrode located over the innervation zone and became more pronounced with increasing distance to the innervation zone, whereas the potentiation of the second phase was largely independent of electrode position. Our simulations indicate that it is unlikely that an increase in motor unit conduction velocities (accompanied or not by changes in their distribution) could account for the experimental observation that only the second phase of a monopolar M wave, but not the first, is enlarged after a brief contraction. However, the combination of an increase in the motor unit conduction velocities and a spreading of the motor unit activation times could potentially explain the asymmetric potentiation of the M-wave phases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700