用户名: 密码: 验证码:
Microstructure and properties of nanocrystalline copper-niobium alloy with high strength and high conductivity
详细信息    查看全文
文摘
A nanocrystalline Cu-10 wt % Nb alloy, with high strength and high conductivity, was prepared by mechanical alloying and subsequent hot pressing. The microstructure and properties of the alloys after consolidation at different temperatures were investigated. The alloy, subjected to hydrogen-annealing of milled powders at 560 ¡ãC for 1 h and then vacuum hot-pressing sintering under 30 MPa pressure and 900 ¡ãC for 2 h, has a microhardness of 334 HV, a tensile strength of 1102 MPa, a yield strength of 1043 MPa, and an electrical conductivity of 57 % IACS (International Annealing Copper Standard). The as processed alloy is characterised by Nb nanoparticles dispersed in the nanocrystalline Cu matrix. The high strength of Cu-Nb alloy is related with the microstructure, i.e. the nanocrystalline grains produce the grain boundary strengthening, while the Nb nanoparticles produce the precipitation strengthening. The grain boundaries and the nanoparticles are also found to influence the electrical conductivity of the alloy considerably.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700