用户名: 密码: 验证码:
In-situ metal matrix composite steels: Effect of alloying and annealing on morphology, structure and mechanical properties of TiB2 particle containing high modulus steels
详细信息    查看全文
文摘
We systematically study the morphology, size and dispersion of TiB2 particles formed in-situ from Fe–Ti–B based melts, as well as their chemical composition, crystal structure and mechanical properties. The effects of 5 wt.% additions of Cr, Ni, Co, Mo, W, Mn, Al, Si, V, Ta, Nb and Zr, respectively, as well as additional annealing treatments, were investigated in order to derive guidelines for the knowledge based alloy design of steels with an increased stiffness/density ratio and sufficiently high ductility. All alloying elements were found to increase the size of the coarse primary TiB2 particles, while Co led to the most homogeneous size distribution. The size of the eutectic TiB2 constituents was decreased by all alloying additions except Ni, while their aspect ratio was little affected. No clear relation between chemical composition, crystal structure and mechanical properties of the particles could be observed. Annealing of the as-cast alloys slightly increased the size of the primary particles, but at the same time strongly spheroidised the eutectics. Additions of Co and Cr appear thus as the best starting point for designing novel in-situ high modulus metal matrix composite steels, while using Mn in concert with thermo-mechanical processing is most suited to adapt the matrix' microstructure and optimise the particle/matrix co-deformation processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700