用户名: 密码: 验证码:
Presenting and simulating an innovative model of liver phantom and applying two methods for dosimetry of it in neutron radiation therapy
详细信息    查看全文
文摘
A new model of liver phantom is defined, then this model is simulated by MCNPX code for dosimetry in neutron radiation therapy. Additionally, an analytical method is applied based on neutrons collisions and mathematical equations to estimate absorbed doses. Finally, the results obtained from two methods are compared to each other to justify the approach.BackgroundThe course of treatment by neutron radiation can be implemented to treat cancerous tissues, although this method has not yet been widespread.The MIRD and the Stylized Family Phantom were the first anthropomorphic phantoms, although the representation of internal organs was quite crude in them. At present, a water phantom is usually used for clinical dosimetry.Materials and methodsEach of the materials in an adult liver tissue including water and some organic compounds is decomposed into its constituent elements based on mass percentage and density of every element. Then, the accurate mass of every decomposed material of human liver tissue is correlated to masses of the phantom components.ResultsThe absorbed doses are computed by MCNPX simulation and analytical method in all components and different layers of this phantom.ConclusionsWithin neutron energy range of 0.001 eV–15 MeV, the calculated doses by MCNPX code are approximately similar to results obtained by analytical method, and the derived graphs of both methods approve one another. It is also concluded that through increasing the incident neutron energy, water receives the largest amounts of absorbed doses, and carbon, nitrogen and sulfur receive correspondingly less amounts, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700