用户名: 密码: 验证码:
Role of Scoparia dulcis linn on noise-induced nitric oxide synthase (NOS) expression and neurotransmitter assessment on motor function in Wistar albino rats
详细信息    查看全文
文摘
Noise pollution is one of the most widespread and fast growing environmental and occupational menaces in the modern era. Exposure to noise above 100 dB is not adaptable through the brain homeostatic mechanism. Yet, the detrimental effects of noise have often been ignored. Developing reliable animal models to understand the neurobiology of noise stress and advance our research in the field of medicine to impede this growing stressor is needed. In this study experimental animals were divided into four groups, (i) Control and (ii) S. dulcis extract (200 mg/kg b w) treated control group. (iii) To mimic the influence of noise, animals in this group were exposed to noise stress (100 dB/4 h/day) for 15 days and finally, (iv) Noise exposed treated with S. dulcis extract (200 mg/kg b w) group. Rota-rod and narrow beam performance results showed impaired motor co-ordination in noise exposed group on both 1st and 15th day when compared to controls. This impaired motor function on exposure to noise could be attributed to the altered norepinephrine, dopamine and serotonin levels in both the striatum and cerebellum. Moreover, the motor impaired associated changes could also be attributed to upregulated nNOS and iNOS protein expression in the cerebellum resulting in increased nitric oxide radical production. This increased reactive free radicals species can initiate lipid peroxidation mediated changes in the cerebellar Purkinje cells, which is responsible for initiating inhibitory motor response and ultimately leading to impaired motor co-ordination.Treatment with S. dulcis extract (200 mg/kg b w) could control motor impairment and regulate neurotransmitter level as that of control groups when compared to noise exposed group. One key aspect of therapeutic efficacy of the plant could have resulted due to attenuated lipid peroxidation mediated damages on the cerebellar Purkinje cells thereby regulating motor impairment. Thus, targeting the antioxidant and free radicals scavenging properties of the plant could serve as a potential therapeutic to combat this environmental stressor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700