用户名: 密码: 验证码:
Coarsening kinetics of fine-scale microstructures in deformed materials
详细信息    查看全文
文摘
In this work we consider three representative continuous coarsening processes, namely subgrain growth in deformed subgrain structures, triple junction motion in deformed lamellar structures, and grain growth in deformed nanocrystalline structures, spanning a large range in structural scale and driving force. We propose a unified coarsening model, which is based on recovery kinetics and allows the apparent activation energy to change during coarsening. The model is successfully applied to the three coarsening processes in different materials of different structural morphology and scale, showing that the apparent activation energy increases during coarsening, which is verified by direct calculation. The increase in the apparent activation energy dominates the coarsening kinetics and leads to a significant decrease in the coarsening rate as coarsening proceeds. This suggests that a conventional grain growth model is not applicable in an analysis of coarsening of nanostructured materials. Our analysis also shows that an initial low thermal stability of nanostructured materials is inherently related to their large boundary area per unit volume and their high content of stored energy, providing a large driving force and, it appears, a low activation energy for structural coarsening.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700