用户名: 密码: 验证码:
Design, synthesis, and evaluation of novel porcupine inhibitors featuring a fused 3-ring system based on the ‘reversed’ amide scaffold
详细信息    查看全文
文摘
The Wnt signaling pathway is an essential signal transduction pathway which leads to the regulation of cellular processes such as proliferation, differentiation and migration. Aberrant Wnt signaling is known to have an association with multiple cancers. Porcupine is an enzyme that catalyses the addition of palmitoleate to a serine residue in Wnt proteins, a process which is required for the secretion of Wnt proteins. Here we report the synthesis and structure–activity-relationship of the novel porcupine inhibitors based on a ‘reversed’ amide scaffold. The leading compound 53 was as potent as the clinical compound LGK974 in a cell based STF reporter gene assay. Compound 53 potently inhibited the secretion of Wnt3A, therefore was confirmed to be a porcupine inhibitor. Furthermore, compound 53 showed excellent chemical and plasma stabilities. However, the clearance of compound 53 in liver microsomal tests was moderate to high, and the solubility of compound 53 was suboptimal. Collective efforts toward further optimization of this novel tricyclic template to develop better porcupine inhibitors will be subsequently undertaken and reported in due course.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700