用户名: 密码: 验证码:
Motion planning for robotic manipulators using robust constrained control
详细信息    查看全文
文摘
Since their first appearance in the 1970's, industrial robotic manipulators have considerably extended their application fields, allowing end-users to adopt this technology in previously unexplored scenarios. Correspondingly, the way robot motion can be specified has become more and more complex, requiring new capabilities to the robot, such as reactivity and adaptability. For an even enhanced and widespread use of industrial manipulators, including the newly introduced collaborative robots, it is necessary to simplify robot programming, thus allowing this activity to be handled by non-expert users. Next generation robot controllers should intelligently and autonomously interpret production constraints, specified by an application expert, and transform them into motion commands only at a lower and real-time level, where updated sensor information or other kind of events can be handled consistently with the higher level specifications. The availability of several execution strategies could be then effectively exploited in order to further enhance the flexibility of the resulting robot motion, especially during collaboration with humans.This paper presents a novel methodology for motion specification and robust reactive execution. Traditional trajectory generation techniques and optimisation-based control strategies are merged into a unified framework for simultaneous motion planning and control. An experimental case study demonstrates the effectiveness and the robustness of this approach, as applied to an image-guided grasping task.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700