用户名: 密码: 验证码:
Buckling and free vibration of shear-flexible sandwich beams using a couple-stress-based finite element
详细信息    查看全文
文摘
In this work, we create a framework for linear buckling and free vibration analyses of sandwich beams using a microstructure-dependent Timoshenko beam model founded on the modified couple-stress theory. The stiffness parameters of a structural web-core sandwich panel are determined by unit cell analysis. An extension to homogeneous cores is also carried out. By employing the exact general solution to the governing equations of the beam, an accurate approximate finite element stiffness matrix is formulated. Furthermore, the static shape functions are used to derive consistent linear geometric stiffness and mass matrices. A convergence study shows that the approximate finite element has good accuracy although the hyperbolic terms of the exact general solution have been expanded into only relatively low-order polynomial series. Results from examples show that the microstructure-dependent beam can predict critical buckling loads and natural frequencies with very good accuracy when compared to more sophisticated finite element models. Unlike the classical Timoshenko beam model, the microstructure-dependent model yields accurate results also when the sandwich assembly is transversely flexible and the bending stiffness of the faces non-negligible.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700