用户名: 密码: 验证码:
Pluripotent stem cell expansion and neural differentiation in 3-D scaffolds of tunable Poisson’s ratio
详细信息    查看全文
文摘
Biophysical properties of the scaffolds such as the elastic modulus, have been recently shown to impact stem cell lineage commitment. On the other hand, the contribution of the Poisson’s ratio, another important biophysical property, to the stem cell fate decision, has not been studied. Scaffolds with tunable Poisson’s ratio (ν) (termed as auxetic scaffolds when Poisson’s ratio is zero or negative) are anticipated to provide a spectrum of unique biophysical 3-D microenvironments to influence stem cell fate. To test this hypothesis, in the present work we fabricated auxetic polyurethane scaffolds (ν = 0 to −0.45) and evaluated their effects on neural differentiation of mouse embryonic stem cells (ESCs) and human induced pluripotent stem cells (hiPSCs). Compared to the regular scaffolds (ν = +0.30) before auxetic conversion, the auxetic scaffolds supported smaller aggregate formation and higher expression of β-tubulin III upon neural differentiation. The influences of pore structure, Poisson’s ratio, and elastic modulus on neural lineage commitment were further evaluated using a series of auxetic scaffolds. The results indicate that Poisson’s ratio may confound the effects of elastic modulus, and auxetic scaffolds with proper pore structure and Poisson’s ratio enhance neural differentiation. This study demonstrates that tuning the Poisson’s ratio of the scaffolds together with elastic modulus and microstructure would enhance the capability to generate broader, more diversified ranges of biophysical 3-D microenvironments for the modulation of cellular differentiation.Statement of SignificanceBiophysical signaling from the substrates and scaffolds plays a critical role in neural lineage commitment of pluripotent stem cells. While the contribution of elastic modulus has been well studied, the influence of Poisson’s ratio along with microstructure of the scaffolds remains unknown largely due to the lack of technology to produce materials with tailorable Poisson’s ratio. This study fabricated auxetic polyurethane scaffolds with different elastic modulus, Poisson’s ratio and microstructure and evaluated neural differentiation of pluripotent stem cells. The findings add a novel angle to understand the impact of biophysical microenvironment on stem cell fate decisions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700