用户名: 密码: 验证码:
Optimal time scales of input fluctuations for spiking coherence and reliability in stochastic Hodgkin-Huxley neurons
详细信息    查看全文
文摘
Channel noise, which is generated by the random transitions of ion channels between open and closed states, is distinguished from external sources of physiological variability such as spontaneous synaptic release and stimulus fluctuations. This inherent stochasticity in ion-channel current can lead to variability of the timing of spikes occurring both spontaneously and in response to stimuli. In this paper, we investigate how intrinsic channel noise affects the response of stochastic Hodgkin–Huxley (HH) neuron to external fluctuating inputs with different amplitudes and correlation time. It is found that there is an optimal correlation time of input fluctuations for the maximal spiking coherence, where the input current has a fluctuating rate approximately matching the inherent oscillation of stochastic HH model and plays a dominating role in the timing of spike firing. We also show that the reliability of spike timing in the model is very sensitive to the properties of the current input. An optimal time scale of input fluctuations exists to induce the most reliable firing. The channel-noise-induced unreliability can be mostly overridden by injecting a fluctuating current with an appropriate correlation time. The spiking coherence and reliability can also be regulated by the size of channel stochasticity. As the membrane area (or total channel number) of the neuron increases, the spiking coherence decreases but the spiking reliability increases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700