用户名: 密码: 验证码:
TRPM2 contributes to LPS/IFN纬-induced production of nitric oxide via the p38/JNK pathway in microglia
详细信息    查看全文
文摘
Microglia are immune cells that maintain brain homeostasis at a resting state by surveying the environment and engulfing debris. However, in some pathological conditions, microglia can produce neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO) that lead to neuronal degeneration. Inflammation-induced calcium (Ca2+) signaling is thought to underlie this abnormal activation of microglia, but the mechanisms are still obscure. We previously showed that combined application of lipopolysaccharide and interferon 纬 (LPS/IFN纬) induced-production of NO in microglia from wild-type (WT) mice is significantly reduced in microglia from transient receptor potential melastatin 2 (TRPM2)-knockout (KO) mice. Here, we found that LPS/IFN纬 produced a late-onset Ca2+ signaling in WT microglia, which was abolished by application of the NADPH oxidase inhibitor diphenylene iodonium (DPI) and ML-171. In addition, pharmacological blockade or gene deletion of TRPM2 channel in microglia did not show this Ca2+ signaling. Furthermore, pharmacological manipulation and Western blotting revealed that Ca2+ mobilization, the proline-rich tyrosine kinase 2 (Pyk2), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH2-terminal kinase (JNK) contributed to TRPM2-mediated LPS/IFN纬-induced activation, while the extracellular signal-regulated protein kinase (ERK) did not. These results suggest that LPS/IFN纬 activates TRPM2-mediated Ca2+ signaling, which in turn increases downstream p38 MAPK and JNK signaling and results in increased NO production in microglia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700