用户名: 密码: 验证码:
Defining the drug incorporation properties of PLA–PEG nanoparticles
详细信息    查看全文
文摘
The drug incorporation and physicochemical properties of PLA–PEG micellar like nanoparticles were examined in this study using a model water soluble drug, procaine hydrochloride. Procaine hydrochloride was incorporated into nanoparticles made from a series of PLA–PEG copolymers with a fixed PEG block (5 kDa) and a varying PLA segment (3–110 kDa). The diameter of the PLA-nanoparticles increased from 27.7 to 174.6 nm, with an increase in the PLA molecular weight. However, drug incorporation efficiency remained similar throughout the series. Incorporation of drug into the smaller PLA–PEG nanoparticles made from 3:5, 15:5 and 30:5 copolymers did not influence the particle size, while an increase was observed for the larger systems comprising 75:5 and 110:5 copolymers. An increase in drug content for PLA–PEG 30:5 nanoparticles was achieved by increasing the theoretical loading (quantity of initially present drug). The size of these nanoparticles remained unchanged with the increasing drug content, supporting the proposed micellar type structure of the PLA–PEG 30:5 nanoparticles. The morphology of these systems remained unchanged both at low and high theoretical drug loadings. Formulation variables, such as an increase in the aqueous phase pH, replacement with the base form of the drug and inclusion of lauric acid in the formulation did not improve the incorporation efficiency of drug into PLA–PEG 30:5 nanoparticles. While poly(aspartic acid) as a complexation agent did not improve the drug incorporation efficiency of procaine hydrochloride, it did so for another water soluble drug diminazene aceturate. This may be attributed to a stronger interaction of diminazene aceturate with poly(aspartic acid) relative to procaine hydrochloride, as confirmed by thermodynamic analysis of isothermal titration calorimetric data. The drug incorporation and physicochemical characterisation data obtained in this study may be relevant in optimising the drug incorporation and delivery properties of these potential drug targeting carriers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700