用户名: 密码: 验证码:
Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination
详细信息    查看全文
文摘
Granular activated carbon (GAC) filtration is used during drinking water treatment for the removal of micropollutants such as taste and odour compounds, halogenated hydrocarbons, pesticides and pharmaceuticals. In addition, the active microbial biomass established on GAC is responsible for the removal of biodegradable dissolved organic carbon compounds present in water or formed during oxidation (e.g., ozonation and chlorination) processes. In order to conduct correct kinetic evaluations of DOC removal during drinking water treatment, and to assess the state and performance of full-scale GAC filter installations, an accurate and sensitive method for active biomass determination on GAC is required. We have developed a straight-forward method based on direct measurement of the total adenosine tri-phosphate (ATP) content of a GAC sample and other support media. In this method, we have combined flow-cytometric absolute cell counting and ATP analysis to derive case-specific ATP/cell conversion values. In this study, we present the detailed standardisation of the ATP method. An uncertainty assessment has shown that heterogeneous colonisation of the GAC particles makes the largest contribution to the combined standard uncertainty of the method. The method was applied for the investigation of biofilm formation during the start-up period of a GAC pilot-scale plant treating Lake Zurich water. A rapid increase in the biomass of up to 1.1×1010 cells/g GAC dry weight (DW) within the first 33 days was observed, followed by a slight decrease to an average steady-state concentration of 7.9×109 cells/g GAC DW. It was shown that the method can be used to determine the biomass attached to the GAC for both stable and developing biofilms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700