用户名: 密码: 验证码:
Structure of bicomponent metal-oxide composites synthesized by electron beam irradiation method
详细信息    查看全文
文摘
In order to understand the formation process of metal-oxide composite in an electron beam irradiation method in aqueous phase, the structure and composition of obtained solid were correlated to the synthesis parameters. Transition metal did not precipitate alone by the electron beam irradiation, but they did in the presence of platinum or support. Due to the relatively high reduction potential, copper underwent reduction to metallic state and readily precipitated by forming Pt-Cu alloy and/or copper oxide on solid surface. In the Pt-Cu/CeO2 system, the structure of Pt-Cu was ruled by two competing factors, growth of alloy nanoparticles promoted by sulfate ion and deposition of metal (alloy) on CeO2 support with their concomitant partial oxidation. CeO2 was suggested to immobilize the metals oxidatively before they coalesce. Iron barely formed alloy with Pt, but it directly precipitated on support as oxide without being reduced to metal due to its oxophilicity. Oxide was formed either via reduction to metallic state (for Pt and Cu) or through direct oxygenation or hydroxylation on solid (for Fe). Under the restriction of reduction potential, the size and composition of alloy nanoparticles and the content of oxide phase were drastically modified by support surface property and anion species in the solution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700