用户名: 密码: 验证码:
Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers
详细信息    查看全文
文摘
In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1 % (m/v) Pd + 0.03 % (m/v) Mg + 0.05 % (v/v) Triton X-100 was used as the chemical modifier for both atomizers. The samples (naphtha, gasoline and petroleum condensate) were stabilized in the form of a three-component solution (detergentless microemulsion) with the sample, propan-1-ol and 0.1 % (v/v) HNO3 in a ratio of 3.0:6.4:0.6. The characteristic mass of 13 pg found in the THFA was about a factor of two better than that of 28 pg obtained with the THPA; however, the limits of detection (LOD) and quantification (LOQ) were essentially the same for both atomizers (1.9 and 6.2 μg L−1, respectively, for THPA, and 1.8 and 5.9 μg L−1, respectively, for THFA) due to the increased noise observed with the THFA. A possible explanation for that is a partial blockage of the radiation from the hollow cathode lamp by the narrow inner diameter of this tube and the associated loss of radiation energy. Due to the lack of an appropriate certified reference material, recovery tests were carried out with inorganic and organic arsenic standards and the results were between 89 % and 111 % . The only advantage of the THFA found in this work was a reduction of the total analysis time by about 20 % due to the ‘hot injection’ that could be realized with this furnace. The arsenic concentrations varied from < LOQ to 43.3 μg L−1 in the samples analyzed in this work.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700