用户名: 密码: 验证码:
Characterizing terahertz channels for monitoring human lungs with wireless nanosensor networks
详细信息    查看全文
文摘
We characterize terahertz wireless channels for extracting data from nanoscale sensors deployed within human lungs. We discover that the inhalation and exhalation of oxygen and carbon dioxide causes periodic variation of the absorption coefficient of the terahertz channel. Channel absorption drops to its minimum near the end of inhalation, providing a window of opportunity to extract data with minimum transmission power. We propose an algorithm for nanosensors to estimate the periodic channel by observing signal-to-noise ratio of the beacons transmitted from the data sink. Using real respiration data from multiple subjects, we demonstrate that the proposed algorithm can estimate the minimum absorption interval of the periodic channel with 98.5% accuracy. Our analysis shows that by confining all data collections during the estimated low-absorption window of the periodic channel, nanosensors can reduce power consumption by six orders of magnitude. Finally, we demonstrate that for wireless communications within human lungs, 0.1–0.12 THz is the least absorbing spectrum within the terahertz band.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700