用户名: 密码: 验证码:
A modified HS model: Numerical applications in modeling the response of bituminous materials
详细信息    查看全文
文摘
This paper presents numerical application of a modified Huet-Sayegh (MHS) model for modeling the response of bituminous materials. The model consists of elastic, viscoelastic and viscous response elements. Application of the model for describing the frequency domain response of bituminous materials is presented. To utilize the model for time domain use, a numerical approach is proposed. The proposed numerical approach utilizes the Gr¨¹nwald Letnikov definition of fractional derivatives. The formulation is first discussed for one dimensional case, and then generalized into three dimensional forms by decoupling the deformation into deviatoric and volumetric components. The 3D formulation is finally implemented into a commercially available strain-controlled finite element program, ABAQUS. For this purpose, a user material subroutine (UMAT) code has been scripted in FORTRAN language. After performing various simulations to verify the UMAT code, application of the material model in performing meso-mechanistic computations for porous asphalt layer is presented. Simulation results are used to illustrate the significance of the linear dashpot in the MHS model. Moreover, results that were obtained from the UMAT code are compared with corresponding results obtained with the built-in material model in ABAQUS. Good agreement in results has been observed. The results have demonstrated the model accuracy and the suitability of the proposed numerical approach to allow the model use in finite element environments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700