用户名: 密码: 验证码:
Failure analysis of composite laminate under low-velocity impact based on micromechanics of failure
详细信息    查看全文
文摘
Previous researches on the impacted composite laminates were mainly carried out according to the macromechanics-based homogenous strength theories, which ignore the local stress nonuniformity and strength difference between the fiber and matrix. In this paper, a new multiscale analysis method which combines the micromechanics of failure (MMF) theory for intralaminar damage and cohesive model for interlaminar failure is proposed. This approach is able to identify the failure modes of fiber and matrix in microscale as well as delamination between laminas. The finite element model of the multidirectional carbon fiber reinforced plastic (CFRP) laminate subjected to low-velocity impact is built on ABAQUS/Explicit platform. User material subroutine VUMAT is developed to analyze the micro stresses and determine the possible failure modes of fiber and matrix. Cohesive elements with bi-linear traction-separation law are employed to capture the onset and propagation of delamination. Finally, the structure response, fiber and matrix failure mode and delamination area are compared with experimental data under different impact energies, and the good agreements validate the effectiveness and accuracy of the novel method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700