用户名: 密码: 验证码:
Dynamically-enhanced retention of gold nanoclusters in HeLa cells following X-rays exposure: A cell cycle phase-dependent targeting approach
详细信息    查看全文
文摘
Cell cycle phase could affect the cellular uptake of nanoparticles. Based on the fact that ionizing radiation exposure can delay cell cycle progression including inducing G2/M phase arrest, we propose that ionizing radiation exposure is a cell cycle phase-dependent targeting approach for intracellular delivery of nano-agents in tumor cells.

Materials and methods

We synthesized luminescent gold nanoclusters (AuNCs) using a one-pot green synthetic method. Subsequently, we used the as-prepared AuNCs as both “nano-agents” and fluorescent trafficking probes for our study using human cervical carcinoma HeLa cells. Estimating the cellular uptake of AuNCs and cell cycle analysis were performed following X-rays irradiation and cell synchronization.

Results

Our work showed that X-rays irradiation could delay the division of HeLa cells and thereby enhance the retention of AuNCs in HeLa cells, which is a reverse strategy compared with other studies on synergistic nano-radiotherapy. Our results demonstrated that the cell cycle synchronization influenced the cellular uptake processes of AuNCs, suggesting that dynamic cell cycle progression could affect the cellular uptake kinetics of AuNCs.

Conclusion

We consider that the radiation-induced cell division delay might provide a possible mechanism underlying the enhanced effect for the cellular uptake of AuNCs in irradiated HeLa cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700