用户名: 密码: 验证码:
Phase separation and mechanical responses of polyurethane nanocomposites
详细信息    查看全文
文摘
Nanocomposites of a diamine-cured polyurethane with nanofillers of different kinds, sizes, and surfaces were studied. Atomic force microscopy, scanning electron microscopy, X-ray diffraction, tensile tests, and dynamic mechanical thermal analysis were employed in the experiments. Experimental results suggest that mechanical properties are strongly correlated to polymer phase separation, which depends on the nature of the interface between the polymer and the nanoparticles. Two stages of phase separation were observed: the first stage involves the self-assembly of the hard segments into small hard phases of about 10 nm in width; the second stage involves the assembly of the 10 nm wide hard phases into larger domains of about 40–100 nm in width. In the case of polyurethane/ZnO nanocomposites with 5 wt % (less than 1 vol % ) 33 nm ZnO nanoparticles, the covalent bonds that were formed between the polymer and ZnO surface hydroxyl groups constrain both stages of phase separation in polyurethane, resulting in approximately 40 % decrease in the Young's modulus, 80 % decrease in the strain at fracture, and 11 °C increase in the glass transition temperature of the soft segments. In the case of polyurethane/Al2O3 nanocomposites with 5 wt % 15 nm Al2O3 nanoparticles, hydrogen bonds between the particles and the polymer mainly constrain the second step of the phase separation, resulting in about 30 % decrease in the Young's modulus and 12 °C increase in the glass transition temperature, but only a moderate decrease in the strain at fracture. The most striking results come from polyurethane/clay composites, where only van der Waals type interactions exist between polyurethane and the organically modified clay (Cloisite 20A). With the addition of 5 wt % surface modified clay (Cloisite 20A), both the Young's modulus and the strain at fracture decrease more than 80 % , but the glass transition temperature increases by about 13 °C. Adding 10 wt % Cloisite 20A into polyurethane almost totally disrupts the phase separation, resulting in a very soft composite that resembles a “viscous liquid” rather than a solid.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700