用户名: 密码: 验证码:
Aeroelastic effect on aerothermoacoustic response of metallic panels in supersonic flow
详细信息    查看全文
文摘
A finite element formulation is presented for the analysis of the aeroelastic effect on the aerothermoacoustic response of metallic panels in supersonic flow. The first-order shear deformation theory (FSDT) and the von Karman nonlinear strain-displacement relationships are employed to consider the geometric nonlinearity induced by large deflections. The piston theory and the Gaussian white noise are used to simulate the mean flow aerodynamics and the turbulence from the boundary layer. The thermal loading is assumed to be steady and uniformly distributed, and the material properties are assumed to be temperature independent. The governing equations of motion are firstly formulated in structural node degrees of freedom by using the principle of virtual work, and then transformed and reduced to a set of coupled nonlinear Duffing oscillators in modal coordinates. The dynamic response of a panel is obtained by the Runge-Kutta integration method. The results indicate that the increasing aeroelastic effect can lead the panel vibration from a random motion to a highly ordered motion in the fashion of diffused limit cycle oscillations (LCOs), and remarkably alter the stochastic bifurcation and the spectrum of the aerothermoacoustic response. On the other hand there exists a counterbalance mechanism between the external random loading and the aeroelastic effect, which mainly functions through the nonlinear frequency-amplitude response. It is surmised that the aeroelastic effect must be considered in sonic fatigue analysis for panel structures in supersonic flow.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700