用户名: 密码: 验证码:
Effects of WNT10A on Proliferation and Differentiation of Human Dental Pulp Cells
详细信息    查看全文
文摘
Wingless-type MMTV integration site family, member 10A (WNT10A) plays crucial roles in odontogenesis. The aim of this study was to investigate the effects of WNT10A on human dental pulp cells (DPCs), which contain a mixed population of cells, including stem and progenitor cells, and participate in dentin repair or dentin-pulp regeneration.

Methods

Healthy human premolars extracted for orthodontic reasons were used as a study model. The expression of WNT10A protein in dental pulp was determined by immunohistochemistry. The messenger RNA expression of WNT10A and Wnt-related genes was analyzed by semiquantitative reverse-transcription polymerase chain reaction. DPCs were enzymatically separated from pulp tissues, cultured, and passaged. The biological effects of WNT10A on DPCs were investigated using recombinant lentivirus encoding WNT10A complementary DNA. WNT10A-induced changes in DPC proliferation were assessed by methyltetrazolium assay and flow cytometry. In order to determine the effects of WNT10A on DPC differentiation, the activity of alkaline phosphatase (ALP), an early marker of odontoblastic differentiation, was assessed using an ALP activity assay kit, and the expression levels of odontoblast-specific genes, including DSPP, DMP1, ALP, and COL1A1, were detected by quantitative polymerase chain reaction and Western blot.

Results

WNT10A protein was clearly identified in the cytoplasm of DPCs. Semiquantitative reverse-transcription polymerase chain reaction indicated the expression of WNT10A and Wnt-related genes in pulp tissues as well as in passaging DPCs. Lentiviral overexpression of WNT10A enhanced proliferation of DPCs and down-regulated ALP activity and the expression of odontoblast-specific genes.

Conclusions

WNT10A promotes the proliferation of DPCs and negatively regulates their odontoblastic differentiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700