用户名: 密码: 验证码:
Finite Markov chain analysis of classical differential evolution algorithm
详细信息    查看全文
文摘
Theoretical analyses of algorithms are important to understand their search behaviors and develop more efficient algorithms. Compared with the plethora of works concerning the empirical study of the differential evolution (DE), little theoretical research has been done to investigate the convergence properties of DE so far. This paper focuses on theoretical researches on the convergence of DE and presents a convergent DE algorithm. First of all, it is proved that the classical DE cannot converge to the global optimal set with probability 1 by using the property that it cannot escape from a local optimal set. Inspired by the characteristics of the elitist genetic algorithm, this paper proposed a modified DE to overcome the disadvantage. The proposed algorithm employs two operators that assist it in escaping from a local optimal set and enhance the diversity of the population. And it is then verified that the proposed algorithm is capable of converging to global optima with probability 1. The theoretical research of this paper is undertaken in a finite discrete set, and the analysis tool used is the Markov chain. The numerical experiments are conducted on a deceptive function and a set of benchmark functions. The experimental results support the theoretical analyses on the convergence performances of the classical and modified DE algorithm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700