用户名: 密码: 验证码:
Learning optimal spatial filters by discriminant analysis for brain¨Ccomputer-interface
详细信息    查看全文
文摘
Common Spatial Pattern (CSP) is one of the most widespread methods for Brain¨CComputer Interfaces (BCI), which is capable of enhancing the separability of the brain signals such as multi-channel electroencephalogram (EEG). CSP attempts to strengthen the separability by maximizing the variance of the spatially filtered signal of one class while minimizing it for another class. A straightforward way to improve the CSP is to employ the Fisher¨CRao linear discriminant analysis (FLDA). But for the two-class scenario in BCI, FLDA merely result in as small as one filter. Experimental results have shown that the number of spatial filter is too small to achieve satisfying classification accuracy. Therefore, more than one filter is expected to get better performance. To deal with this difficulty, in this paper we propose to divide each class into many sub-classes (clusters) and formulate the problem in a re-designed graph embedding framework where the vertexes are cluster centers. We also reformulate the traditional FLDA in our graph embedding framework, which helps developing and understanding the proposed method. Experimental results demonstrate the advantages of the proposed method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700