用户名: 密码: 验证码:
Increased Throughput for Low-Abundance Protein Biomarker Verification by Liquid Chromatography/Tandem Mass Spectrometry
详细信息    查看全文
  • 作者:Michael Berna ; Bradley Ackermann
  • 刊名:Analytical Chemistry
  • 出版年:2009
  • 出版时间:May 15, 2009
  • 年:2009
  • 卷:81
  • 期:10
  • 页码:3950-3956
  • 全文大小:152K
  • 年卷期:v.81,no.10(May 15, 2009)
  • ISSN:1520-6882
文摘
Low-abundance protein quantification has historically been performed using ligand binding techniques. However, due to the time and cost associated with developing enzyme-linked immunosorbent assay (ELISA), mass spectrometric approaches are playing an increasingly important role. Protein quantification at or below the nanogram per milliliter level using liquid chromatography/tandem mass spectrometry (LC/MS/MS) typically utilizes an immunoaffinity (IA) enrichment step such as immunoprecipitation. In order to maximize mass spectrometry (MS) sensitivity, protein enrichment is followed by a proteolytic cleavage step used to generate a surrogate peptide with better mass spectrometric properties. Unlike ELISA, IA−LC/MS/MS is a serial technique that can require up to 3 days for a single batch analysis due to lengthy incubation and digestion steps. This report describes the use of immunoprecipitation in 96-well ELISA format (IPE) and microwave-assisted protein digestion to reduce the time required to perform LC/MS/MS protein analyses to within a single day. The utility of this approach was investigated through its application to previously published LC/MS/MS protein assays from our laboratory for two cardiotoxicity biomarkers, Myl3 and NTproBNP. Using commercially available antibodies, IPE and microwave-assisted digestion were used to repeat intraday validations for these markers, and intraday precision (%CV) and accuracy (%RE) did not exceed 11% or 3% for either assay, respectively. Additionally, lower limits of quantification of 100 pg/mL (NTproBNP) and 0.95 ng/mL (Myl3) were achieved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700